

LA-UR-21-25404

Approved for public release; distribution is unlimited.

Title: Nuclear Materials Production & Technical Nuclear Forensics

Author(s): Scott, Mark Robert

Intended for: Virtual presentation to the University of Texas

Issued: 2021-06-09

Nuclear Materials Production & Technical Nuclear Forensics

Intelligence & Systems Analysis Group (A-2)

Mark Scott

2021

Fundamentals of a Nuclear Fission Chain Reaction

Demon Core

Critical Mass

Isotope	Bare Sphere Critical Mass	IAEA Significant Quantity (SQ)
235	52 kg	25 kg
²³⁹ Pu	10 kg	8 kg

Absorbed

Pathways to a Nuclear Weapon

To create a nuclear weapon you must first obtain weapons grade material.

- Enriched uranium
- Plutonium

Hurdles to Manufacturing an Improvised Nuclear Device (IND)

What is the primary hurdle to manufacturing an IND?

Obtaining Weapon-Usable Nuclear Material (WUNM)

- First Line of Defense (FLD):
 - Securing WUNM at civilian and defense facilities against theft and/or diversion.
- Second Line of Defense (SLD):
 - Building radiation detection capacity in partner countries to enhance border control to deter, detect and interdict WUNM.
- International Nonproliferation Export Control Program (INECP)
 - To prevent the illicit procurement of equipment, materials, and technological know-how to develop weapons of mass destruction (WMD).

Uranium Isotopes

U-235	Acronym	Description
<0.7	DU	Depleted U
0.7	NU	Natural U
0.7 - 20	LEU	Low Enriched U
>20	HEU	Highly Enriched U
>90		Weapons Grade

Enriched-U Production

Uranium Enrichment Techniques

Gas Centrifuge

Gaseous Diffusion

Uranium Enrichment

Aerodynamic Nozzle

Laser Enrichment AVLIS, MLIS, SILEX

Alternative Methods

- Chemical (CHEMEX)
- **Plasma**
- Thermal (Oak Ridge)

EMIS or Calutron

Comparison of Gaseous Diffusion & Centrifuge

Gaseous Diffusion

- High pressure High thru-put
- Operates as Single Cascade
- 1000 stages: natural → 3.5% 4000 stages; natural \rightarrow 90%
- 100-300 sq. ft. per stage
- ~ 2,500 kW hr/SWU
- Extract 25x more energy out

Centrifuge

- Low pressure Low thru-put
- **Multiple Cascades**
- 10's- 100 stages: natural → 3.5% 300 - 1000 stages: natural → 90%
- 6-8 sq. ft. per stage
- < 50 kW hr/SWU
- Extract 1500x more energy out

Visualizing U-235 Enrichment

U-238 Atoms

U-235 Atoms

Feed	Product	Centrifuges*
0.7%	20%	96
20%	90%	15

^{*40} SWU/year per centrifuge

Centrifuges to Produce HEU from LEU Centrifuges to produce 100kg of product per year

A Westinghouse 1,000 MWe PWR reactor has a core load of 66,410 kg of uranium fuel between 2.1% - 3.1% U-235

Uranium Isotopes

Production:

U-239
$$\beta \longrightarrow Np-239$$

Np-239
$$\beta \longrightarrow Pu-239$$

Conversion:

$$Pu-239 + n \longrightarrow Pu-240$$

238[] -> 239PU -> 240PU

Pu-240 %	<1976 >1976		
<7	Weapons Grade		
7-19	Dogator Crado	Fuel Grade	
>19	Reactor Grade	Reactor Grade	

(Significant Quantity of Pu-239: 8kg)

Plutonium Production

U-235 Neutron Fission X-Section

Moderation of Fast Neutrons

On average water (H₂O) will moderate a neutron after 16 collisions.

Heavy water (D₂O) requires approximately 29 collisions to moderate a neutron.

Hydrogen isotope diagram from NASA JPL

Classes of Reactors

Reactor Class	Moderator	Coolant	Fuel
Light Water (PWR, BWR, VVER)	Water	Water	LEU
Heavy Water (CANDU, PHWR)	Heavy Water	Water	Natural
Graphite (gas) (MAGNOX, AGR)	Graphite	CO ₂	Natural
Graphite (water) (RBMK, Hanford)	Graphite	Water	LEU/Nat.

Other Reactor Types: TRIGA, PBR, Fast, SMR, MSR, AHR

PWR at Cape Town, SA

Pic: Koeberg nuclear power station, Cape Town, South Africa. Credit: Bjorn Rudner

RBMK at Ignalina, LT

CANDU at Bruce Power

Photo: Bruce Power/Cameco Corp.

Pu Production – Rules of Thumb

Typical production rate:

0.91 g-Pu/MWd - Graphite Reactor1.2 g-Pu/MWd - Heavy Water Reactor

Reactor Type	% U-235 Fuel	Typical Burnup (GWd/MTU)	Pu / MTU	% Pu-240
Graphite	0.7%	1.2 - 6.0	1.1 – 3.3 kg	3.8 – 28%
CANDU	0.7%	5 – 10	3.0 - 4.5 kg	21 – 31%
PWR	1.5% - 5.0%	15 – 60	5.6 – 13 kg	13 – 26%
BWR	1.1% - 3.5%	10 – 60	4.0 – 12.5 kg	11 – 31%
TRIGA	20%*	80 – 130	8.5 – 12 kg**	14 – 19%
TRIGA	93%*	80 – 130	1.5 – 2.2 kg**	5 – 7.5%

^{*} TRIGA enrichment is 20, 70 and 93%

^{**}TRIGA core load is around 2.5 kg of U-235

Nuclear Reactor Fuel to Separated Plutonium

Sample Collection

Forensic Process for Spent Fuel

Nuclide Production as a Burnup Indicator

Fuel Age or Cooling Time

Los Alamos National Laboratory

Employees: 13,137

Students: 1,323 Post docs: 498

- 65% male, 35% female
- 45% minorities
- 67% university degrees
- 27% undergraduate degrees
- 19% master's degrees
- 21% PhD

Questions